题目内容
(07年北京卷理)(本小题共14分)
如图,在中,
,斜边
.
可以通过
以直线
为轴旋转得到,且二面角
是直二面角.动点
的斜边
上.
(I)求证:平面平面
;
(II)当为
的中点时,求异面直线
与
所成角的大小;
(III)求与平面
所成角的最大值.
解析:解法一:
(I)由题意,,
,
是二面角
是直二面角,
又二面角
是直二面角,
,又
,
平面
,
又平面
.
平面
平面
.
(II)作,垂足为
,连结
(如图),则
,
是异面直线
与
所成的角.
在中,
,
,
.
又.
在
中,
.
异面直线
与
所成角的大小为
.
(III)由(I)知,平面
,
是
与平面
所成的角,且
.
当最小时,
最大,
这时,,垂足为
,
,
,
与平面
所成角的最大值为
.
解法二:
(I)同解法一.
(II)建立空间直角坐标系,如图,
则,
,
,
,
,
,
.
异面直线
与
所成角的大小为
.
(III)同解法一
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目