题目内容

在△ABC中,若数学公式,则△ABC的形状是


  1. A.
    直角三角形
  2. B.
    等腰或直角三角形
  3. C.
    不能确定
  4. D.
    等腰三角形
B
分析:把已知等式的左边利用同角三角函数间的基本关系切化弦,右边利用正弦定理变形,然后根据二倍角的正弦函数公式化简,由A和B为三角形的内角,根据正弦函数图象与性质得到A与B角度之间的关系,根据角度之间的关系即可得到三角形ABC的形状.
解答:由正弦定理得:==2R,(R为三角形外接圆的半径)
∴a=2RsinA,b=2RsinB,
变形为:=
化简得:2sinBcosB=2sinAcosA,即sin2B=sin2A,
由A和B为三角形的内角,得到2A=2B或2A+2B=180°,
即A=B或A+B=90°,
则△ABC的形状是等腰三角形或直角三角形.
故选B
点评:此题考查了正弦定理,三角函数的恒等变换及正弦函数图象与性质.根据正弦定理及同角三角函数公式化简已知的等式是本题的突破点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网