ÌâÄ¿ÄÚÈÝ
¶ÔÓÚÊýÁÐA£ºa1£¬a2£¬¡£¬an£¬ÈôÂú×ãai¡Ê{0£¬1}£¨i=1£¬2£¬3£¬¡£¬n£©£¬Ôò³ÆÊýÁÐAΪ¡°0-1ÊýÁС±£®¶¨Òå±ä»»T£¬T½«¡°0-1ÊýÁС±AÖÐÔÓеÄÿ¸ö1¶¼±ä³É0£¬1£¬ÔÓеÄÿ¸ö0¶¼±ä³É1£¬0£®ÀýÈçA£º1£¬0£¬1£¬ÔòT£¨A£©£º0£¬1£¬1£¬0£¬0£¬1£®ÉèA0ÊÇ¡°0-1ÊýÁС±£¬ÁîAk=T£¨Ak-1£©£¬k=1£¬2£¬3£¬¡
£¨1£©ÈôÊýÁÐA2£º1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£®ÔòÊýÁÐA0Ϊ
£¨2£©ÈôA0Ϊ0£¬1£¬¼ÇÊýÁÐAkÖÐÁ¬ÐøÁ½ÏÊÇ0µÄÊý¶Ô¸öÊýΪlk£¬k=1£¬2£¬3£¬¡£¬Ôòl2n¹ØÓÚnµÄ±í´ïʽ£®ÊÇ
£¨1£©ÈôÊýÁÐA2£º1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£®ÔòÊýÁÐA0Ϊ
1£¬0£¬1
1£¬0£¬1
£»£¨2£©ÈôA0Ϊ0£¬1£¬¼ÇÊýÁÐAkÖÐÁ¬ÐøÁ½ÏÊÇ0µÄÊý¶Ô¸öÊýΪlk£¬k=1£¬2£¬3£¬¡£¬Ôòl2n¹ØÓÚnµÄ±í´ïʽ£®ÊÇ
l2n=
£¨4n-1£©
1 |
3 |
l2n=
£¨4n-1£©
£®1 |
3 |
·ÖÎö£º£¨1£©Óɱ任TµÄ¶¨Òå¡°T½«¡°0-1ÊýÁС±AÖÐÔÓеÄÿ¸ö0¶¼±ä³É1£¬0¡±£¬Ö±½Ó¿ÉµÃÊýÁÐA0£®
£¨2£©ÉèAkÖÐÓÐbk¸ö01Êý¶Ô£¬Ak+1ÖеÄ00Êý¶ÔÖ»ÄÜÓÉAkÖеÄ01Êý¶ÔµÃµ½£¬ËùÒÔlk+1=bk£¬Ak+1ÖеÄ01Êý¶ÔÓÐÁ½¸ö²úÉú;¾¶£º¢ÙÓÉAkÖеÄ1µÃµ½£» ¢ÚÓÉAkÖÐ00µÃµ½£¬ÓÉ´ËÄÜÇó³öl2n¹ØÓÚnµÄ±í´ïʽ£®
£¨2£©ÉèAkÖÐÓÐbk¸ö01Êý¶Ô£¬Ak+1ÖеÄ00Êý¶ÔÖ»ÄÜÓÉAkÖеÄ01Êý¶ÔµÃµ½£¬ËùÒÔlk+1=bk£¬Ak+1ÖеÄ01Êý¶ÔÓÐÁ½¸ö²úÉú;¾¶£º¢ÙÓÉAkÖеÄ1µÃµ½£» ¢ÚÓÉAkÖÐ00µÃµ½£¬ÓÉ´ËÄÜÇó³öl2n¹ØÓÚnµÄ±í´ïʽ£®
½â´ð£º½â£º£¨1£©¡ßÊýÁÐA2£º1£¬0£¬0£¬1£¬0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬
¡àÓɱ任TµÄ¶¨Òå¿ÉµÃA1£º0£¬1£¬1£¬0£¬0£¬1£®¡£¨2·Ö£©
A0£º1£¬0£¬1£®¡£¨4·Ö£©
£¨2£©ÉèAkÖÐÓÐbk¸ö01Êý¶Ô£¬Ak+1ÖеÄ00Êý¶ÔÖ»ÄÜÓÉAkÖеÄ01Êý¶ÔµÃµ½£¬
ËùÒÔlk+1=bk£¬Ak+1ÖеÄ01Êý¶ÔÓÐÁ½¸ö²úÉú;¾¶£º¢ÙÓÉAkÖеÄ1µÃµ½£» ¢ÚÓÉAkÖÐ00µÃµ½£¬
Óɱ任TµÄ¶¨Òå¼°A0£º0£¬1¿ÉµÃAkÖÐ0ºÍ1µÄ¸öÊý×ÜÏàµÈ£¬ÇÒ¹²ÓÐ2k+1¸ö£¬
ËùÒÔbk+1=lk+2k£¬
ËùÒÔlk+2=lk+2k£¬
ÓÉA0£º0£¬1¿ÉµÃA1£º1£¬0£¬0£¬1£¬A2£º0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬
ËùÒÔl1=1£¬l2=1£¬
µ±k¡Ý3ʱ£¬
ÈôkΪżÊý£¬lk=lk-2+2k-2£¬lk-2=lk-4+2k-4£¬¡l4=l2+22£®
ÉÏÊö¸÷ʽÏà¼Ó¿ÉµÃlk=1+22+24+¡+2k-2=
=
£¨2k-1£©£¬
¾¼ìÑ飬k=2ʱ£¬Ò²Âú×ãlk=
£¨2k-1£©£®
¡àl2n=
£¨4n-1£©£®
¹Ê´ð°¸Îª£º1£¬0£¬1£»
£¨4n-1£©£®
¡àÓɱ任TµÄ¶¨Òå¿ÉµÃA1£º0£¬1£¬1£¬0£¬0£¬1£®¡£¨2·Ö£©
A0£º1£¬0£¬1£®¡£¨4·Ö£©
£¨2£©ÉèAkÖÐÓÐbk¸ö01Êý¶Ô£¬Ak+1ÖеÄ00Êý¶ÔÖ»ÄÜÓÉAkÖеÄ01Êý¶ÔµÃµ½£¬
ËùÒÔlk+1=bk£¬Ak+1ÖеÄ01Êý¶ÔÓÐÁ½¸ö²úÉú;¾¶£º¢ÙÓÉAkÖеÄ1µÃµ½£» ¢ÚÓÉAkÖÐ00µÃµ½£¬
Óɱ任TµÄ¶¨Òå¼°A0£º0£¬1¿ÉµÃAkÖÐ0ºÍ1µÄ¸öÊý×ÜÏàµÈ£¬ÇÒ¹²ÓÐ2k+1¸ö£¬
ËùÒÔbk+1=lk+2k£¬
ËùÒÔlk+2=lk+2k£¬
ÓÉA0£º0£¬1¿ÉµÃA1£º1£¬0£¬0£¬1£¬A2£º0£¬1£¬1£¬0£¬1£¬0£¬0£¬1£¬
ËùÒÔl1=1£¬l2=1£¬
µ±k¡Ý3ʱ£¬
ÈôkΪżÊý£¬lk=lk-2+2k-2£¬lk-2=lk-4+2k-4£¬¡l4=l2+22£®
ÉÏÊö¸÷ʽÏà¼Ó¿ÉµÃlk=1+22+24+¡+2k-2=
1•(1-4
| ||
1-4 |
1 |
3 |
¾¼ìÑ飬k=2ʱ£¬Ò²Âú×ãlk=
1 |
3 |
¡àl2n=
1 |
3 |
¹Ê´ð°¸Îª£º1£¬0£¬1£»
1 |
3 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâж¨ÒåµÄ׼ȷÀí½â£¬½âÌâʱҪºÏÀíµØÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬Ç¡µ±µØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿