题目内容

已知定义域为[0,1]的函数同时满足以下三个条件:①对任意x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否同时适合①②③?并予以证明;
(3)假定存在x∈[0,1],使得f(x)∈[0,1],且f(f(x))=x,求证:f(x)=x
【答案】分析:(1)由①知:f(0)≥0;由③知f(0)≤0,从而得到f(0)=0.
(2)由题设知g(1)=1;由x∈[0,1]知2x∈[1,2],得g(x)∈[0,1],有g(x)≥0;设x1≥0,x2≥0,x1+x2≤1,则;由此能够证明函数g(x)=2x-1在区间[0,1]上同时适合①②③.
(3)若f(x)>x,则由题设知f(x)-x∈[0,1],且由①知f[f(x)-x]≥0,由此入手能证明f(x)=x
解答:解:(1)由①知:f(0)≥0;由③知:f(0+0)≥f(0)+f(0),即f(0)≤0;
∴f(0)=0
(2 ) 证明:由题设知:g(1)=2-1=1;
由x∈[0,1]知2x∈[1,2],得g(x)∈[0,1],有g(x)≥0;
设x1≥0,x2≥0,x1+x2≤1,则

即g(x1+x2)≥g(x1)+g(x2
∴函数g(x)=2x-1在区间[0,1]上同时适合①②③.
(3)证明:若f(x)>x,则由题设知:f(x)-x∈[0,1],且由①知f[f(x)-x]≥0,
∴由题设及③知:x=f(f(x))=f[(f(x)-x)+x]=f[f(x)-x]+f(x)≥f(x
矛盾;
若f(x)<x,则则由题设知:x-f(x)∈[0,1],且由①知f[x-f(x)]≥0,
∴同理得:f(x)=f[(x-f(x))+f(x)]=f[x-f(x)]+f(f(x))≥f(f(x))=x,矛盾;
故由上述知:f(x)=x
点评:本题考查函数值的求法和函数恒成立问题的应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网