题目内容
将容量为100的样本拆分为10组,若前7组频率之和为0.79,而剩下的三组的频数成等比数列,其公比为整数且不为1,求剩下的三组中频数最大的一组的频率.
分析:设三组数分别为a,aq,aq2,(a,q∈N*,q>1),可得a的范围,由于整数,进而可得a=1或a=3,分类讨论可得a和q的值,进而可得aq2,易得频率.
解答:解:设三组数分别为a,aq,aq2,(a,q∈N*,q>1),则
a+aq+aq2=21,即a(1+q+q2)=21,
又因为1+q+q2>3,所以a=
<7,
又因为q是整数,∴a是21的正约数,故a=1或a=3,
当a=1时,可得1+q+q2=21,即(q-4)(q+5)=0,
解得q=4,或q=-5(舍去),
频数最大的一组是aq2=16,频率是
=0.16;
当a=3时,可得1+q+q2=7,即(q-2)(q+3)=0,
解得q=2,或q=-3(舍去),
频数最大的一组是aq2=12,频率是
=0.12.
a+aq+aq2=21,即a(1+q+q2)=21,
又因为1+q+q2>3,所以a=
21 |
1+q+q2 |
又因为q是整数,∴a是21的正约数,故a=1或a=3,
当a=1时,可得1+q+q2=21,即(q-4)(q+5)=0,
解得q=4,或q=-5(舍去),
频数最大的一组是aq2=16,频率是
16 |
100 |
当a=3时,可得1+q+q2=7,即(q-2)(q+3)=0,
解得q=2,或q=-3(舍去),
频数最大的一组是aq2=12,频率是
12 |
100 |
点评:本题考查等比数列的通项公式,涉及分类讨论的思想,属基础题.
练习册系列答案
相关题目
将容量为100的样本数据,按从小到大的顺序分为8个组,如下表
则第三组的频率是( )
组号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
频数 | 10 | 13 | 14 | 14 | 15 | 13 | 12 | 9 |
A、0.14 | ||
B、
| ||
C、0.03 | ||
D、
|