题目内容

设直线y=kx与椭圆数学公式相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    ±2
A
分析:将直线方程与椭圆方程联立,得(3+4k2)x2=12.分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,说明A,B的横坐标是±1,即方程(3+4k2)x2=12的两个根为±1,代入求出k的值.
解答:将直线与椭圆方程联立,
化简整理得(3+4k2)x2=12(*)
因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,
故方程的两个根为±1.代入方程(*),得k=
故选A.
点评:本题考查了直线与圆锥曲线的交点问题,方法是将直线与圆锥曲线方程联立来求解,此方法是数学圆锥曲线中的重要思想方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网