题目内容
【题目】已知函数.
(1)若,求曲线在点处的切线方程;
(2)当时,讨论函数的单调区间.
【答案】(1);(2)见解析.
【解析】
(1)根据题意,由即可得函数的解析式,进而求出函数的导数,据此计算可得与的值,由导数的几何意义分析可得切线的方程,变形即可得答案;
(2)根据题意,求出函数的导数,对的值进行分情况讨论,分析函数的单调性,综合即可得答案.
(1)若,,导函数为,则,.
则所求切线方程为,即;
(2)当时,,
令,可得或.
①当时,即当.
令,可得或;令,可得.
此时,函数的单调递增区间为和,单调递减区间为;
②当时,即当时,对任意的,,
此时,函数的单调递增区间为,无单调递减区间;
③当时,即当时.
令,可得或;令,可得.
此时,函数的单调递增区间为和,单调递减区间为.
综上所述,当时,函数的单调递增区间为和,单调递减区间为;
当时,函数的单调递增区间为,无单调递减区间;
当时,函数的单调递增区间为和,单调递减区间为.
【题目】某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.
(Ⅰ)设消费者的年龄为,对该款智能家电的评分为.若根据统计数据,用最小二乘法得到关于的线性回归方程为,且年龄的方差为,评分的方差为.求与的相关系数,并据此判断对该款智能家电的评分与年龄的相关性强弱.
(Ⅱ)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请判断是否有的把握认为对该智能家电的评价与年龄有关.
好评 | 差评 | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:线性回归直线的斜率;相关系数,独立性检验中的,其中.
临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
如果随机调查这个班的一名学生,求事件A:抽到不积极参加班级工作且学习积极性不高的学生的概率;
若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,请用字母代表不同的学生列举出抽取的所有可能结果;
在的条件下,求事件B:两名学生中恰有1名男生的概率.