题目内容

设函数,其中

(Ⅰ)当时,判断函数在定义域上的单调性;

(Ⅱ)求函数的极值点;

(Ⅲ)证明对任意的正整数,不等式都成立.

 

【答案】

解:函数的定义域为.

,令,则上递增,在上递减,.当时,

上恒成立.

即当时,函数在定义域上单调递增。

(II)分以下几种情形讨论:(1)由(I)知当时函数无极值点.

(2)当时,时,

时,时,函数上无极值点。

(3)当时,解得两个不同解.

时,

此时上有唯一的极小值点.

时,

都大于0 ,上小于0 ,

此时有一个极大值点和一个极小值点.

综上可知,时,上有唯一的极小值点

时,有一个极大值点和一个极小值点

时,函数上无极值点。

(III) 当时,上恒正,上单调递增,当时,恒有.即当时,有

对任意正整数,取

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网