题目内容
已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位小时)的函数,记作y=f(t),下表是某日各时的浪高数据:
经长期观测y=f(t)的曲线可近似地看成函数y=Acos(ωt)+b.
(1)根据以上数据,求出函数y=Acos(ωt)+b的最小正周期T,振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00至晚上20∶00之间,有多少时间可供冲浪者进行运动.
答案:
练习册系列答案
相关题目
已知某海滨浴场的海浪高度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t),下表是某日各时的浪高数据:
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)求函数y=Acosωt+b的最小正周期T,振幅A及函数表达式.
(2)依据规定:当海浪高度高于1m时才对冲浪爱好者开放,请依据(1)的结论,一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动.
t/时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)求函数y=Acosωt+b的最小正周期T,振幅A及函数表达式.
(2)依据规定:当海浪高度高于1m时才对冲浪爱好者开放,请依据(1)的结论,一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动.
已知某海滨浴场的海浪高度y(单位:米)与时间 t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:
经长期观测,函数y=f(t)可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T及函数表达 式(其中A>0,ω>0);
(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?
t/时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T及函数表达 式(其中A>0,ω>0);
(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?
已知某海滨浴场的海浪高度y(单位:米)与时间t(0≤t≤24)(单位:时)的函数关系记作y=f(t),下表是某日各时的浪高数据:
t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
经长期观测,函数y=f(t)可近似地看成是函数。
(1)根据以上数据,求出函数的最小正周期T及函数表达式(其中A>0,ω>0);
(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放
已知某海滨浴场的海浪高度(单位:米)与时间 (单位:时)的函数关系记作,下表是某日各时的浪高数据:
/时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
/米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
经长期观测,函数可近似地看成是函数.
(1)根据以上数据,求出函数的最小正周期T及函数表达 式(其中);
(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?