题目内容
【题目】如图所示,hok基因位于大肠杆菌的R1质粒上,能编码产生一种毒蛋白,会导致自身细胞裂解死亡。另外一个基因sok也在这个质粒上,转录产生的 sokmRNA能与 hokmRNA结合,这两种mRNA结合形成的产物能被酶降解,从而阻止细胞死亡。请回答以下问题:
(1)产生mRNA的过程是______________,需要RNA聚合酶的参与,该酶识别序列的基本组成单位是_____________。sokmRNA能与 hokmRNA结合,说明二者碱基序列_____________,二者结合阻止了基因表达中的___________环节。在mRNA分子结构中,相邻的碱基G与C之间是通过___________连接而成。
(2)当 sokmRNA存在时,hok基因_____________(是或否)可以转录,而当 sokmRNA不存在时,大肠杆菌细胞会裂解死亡的原因_______________________。
(3)用15N标记该大肠杆菌DNA分子,该大肠杆菌在含14N的培养基中连续复制4次,含有14N的DNA分子占全部DNA_________,含15N的链占全部链_______,大肠杆菌能产生的可遗传变异是______________________。
【答案】转录 脱氧核苷酸 互补 翻译 一核糖一磷酸基一核糖一 是 sokmRNA不存在时,hok基因表达产生毒蛋白,会导致自身细胞裂解死亡 100% 1/16 基因突变
【解析】
分析题图:hok基因和sok基因都位于大肠杆菌的Rl质粒上。hok基因编码产生的一种毒蛋白会导致自身细胞裂解死亡。sok基因转录产生的sokmRNA能与hok基因转录产生的hokmRNA结合,这两种mRNA结合形成的结构能被酶降解,从而阻止细胞死亡。
(1) mRNA是以DNA的一条链为模板通过转录过程产生的,需要RNA聚合酶的参与。位于基因首端的启动子是一段有特殊结构的DNA片段,是RNA聚合酶识别和结合的部位,可驱动基因转录出mRNA,因此RNA聚合酶识别序列的基本组成单位是脱氧核苷酸。mRNA为单链结构,是翻译的直接模板。sokmRNA能与 hokmRNA结合,说明二者碱基序列互补,二者结合阻止了基因表达中的翻译环节。在mRNA分子结构中,相邻的碱基G与C之间是通过“─核糖一磷酸基一核糖一”连接而成。
(2) 依题意并分析图示可知:当 sokmRNA存在时,hok基因是可以转录的。当 sokmRNA不存在时,hok基因表达产生的毒蛋白,会导致自身细胞裂解死亡,这正是sokmRNA不存在时,大肠杆菌细胞会裂解死亡的原因。
(3) 用15N标记该大肠杆菌DNA分子,该大肠杆菌在含14N的培养基中连续复制4次,共产生24=16个DNA分子,这16个DNA分子共有32条链,其中有2个DNA分子的1条链含有15N、另1条链含有14N,其余的14个DNA分子的2条链都含有14N,因此含有14N的DNA分子占全部DNA分子总数的100%,含15N的链占全部链的1/16。大肠杆菌为单细胞的原核生物,没有染色体,不能进行有性生殖,所以能产生的可遗传变异是基因突变。
【题目】下列有关哺乳动物成熟红细胞的研究,请回答相关问题:
(1)人红细胞中K+浓度比血浆中高30倍,而Na+浓度却只有血浆的1/6。红细胞维持膜内外K+、Na+不均匀分布________(需要或不需要)消耗ATP。
(2)科学家用丙酮从人的成熟红细胞中提取所有磷脂并铺成单分子层,其面积正好为红细胞细胞膜面积的两倍,其原因是①____________________②_______________________。
(3)氟中毒会改变细胞膜的通透性和细胞代谢。科学家用含不同浓度NaF的饮水喂养小白鼠,一段时间后,培养并测量小白鼠红细胞代谢产热及细胞内的ATP浓度,分别获得产热曲线和细胞内的ATP浓度数据如下,请回答:
NaF浓度(10-6g/mL) | ATP浓度 (10-4mol/L) | |
A组 | 0 | 2.97 |
B组 | 50 | 2.73 |
C组 | 150 | 1.40 |
①根据上述实验设计及结果判断,该实验的目的是________________________,设置A组的目的是_________。
②分析细胞产热量及ATP浓度:B组产热量峰值和ATP浓度均低于A组,原因可能是低浓度的NaF ______(抑制或促进)了细胞代谢中有关酶的活性; C组产热量峰值高于A组而ATP浓度低于A组,原因可能是高浓度的NaF ______(抑制或促进)了细胞代谢中有关酶的活性,同时,由于损伤了细胞膜结构,细胞为维持正常的功能,需要消耗更多_____。