题目内容
【题目】基因工程中,GUS基因编码的酶可将无色底物生成蓝色产物,GFP基因会产生绿色荧光蛋白,这两种基因都可作为标记基因来研究发育生物学的问题。利用双CRISPR/Cas9系统和Cre/loxP重组酶系统技术可更好地实现该研究。请据图作答:
(1)图1为双CRISPR/Cas9系统作用示意图。该系统能够特异性识别DNA序列并切割特定位点,图中行使这些功能的分子结构分别是____________、______________。图中向导RNA与DNA结合的原理是______________。将删除区切割后,转入基因与原DNA片段可通过形成_______________拼接起来,形成新的DNA序列。
(2)双CRISPR/Cas9系统可直接在靶细胞内起作用,与传统的基因工程相比,该操作无需_______________(填写工具)。与质粒载体导入外源基因比,双CRISPR/Cas9系统编辑的基因可以不含________________.
(3)图2为Cre/loxP重组酶系统作用示意图。利用双CRISPR/Cas9系统可精准地将loxP序列、GUS基因及GFP基因连接,接上35s启动子之后可在组织中检测出蓝色区而无绿色荧光区,这是由于____________基因自身无启动子而无法表达。Cre基因是重组酶基因,经38℃热处理后可被激活表达,在此前提下组织中可检测出绿色荧光区,据此分析绿色荧光区形成的原因是___________________________________________________________________________采用_________________________等手段可以扩大组织中绿色荧光区的面积。
【答案】向导RNA Cas9蛋白 碱基互补配对 磷酸二酯键 载体(运载体、质粒) 启动子、终止子和标记基因 GFP 重组酶能(特异性识别并)切割loxP序列,使GFP基因得以表达 延长热处理时间
【解析】
生物的性状受基因控制,生物能发出绿色荧光是由于生物的DNA分子上含有绿色荧光蛋白基因,基因能通过控制蛋白质的结构直接控制生物性状;图1为双CRISPR/Cas9系统作用示意图,由图可知,向导RNA中有一段识别序列,具有识别功能,可以与特定的DNA序列发生碱基互补配对,Cas9蛋白则可切割所识别的特定DNA序列;导入的基因和原DNA片段之间需要重新形成磷酸二酯键才能连接在一起,形成新的DNA分子,该过程类似于基因工程操作中的构建基因表达载体步骤,据此作答。
(1)图1为双CRISPR/Cas9系统作用示意图。该系统能够特异性识别DNA序列并切割特定位点的原因分别是向导RNA能识别特定序列、Cas9蛋白能定点切割DNA序列。图中向导RNA与DNA结合的原理是碱基互补配对。将删除区切割后,转入基因与原DNA片段可通过形成磷酸二酯键拼接起来,形成新的DNA序列。
(2)双CRISPR/Cas9系统可直接在靶细胞内起作用,与传统的基因工程相比,该操作无需载体(运载体)。与质粒载体导入外源基因比,双CRISPR/Cas9系统编辑的基因可以不含启动子、终止子和标记基因。
(3)GUS基因编码的酶可将无色底物生成蓝色产物,GFP基因会产生绿色荧光蛋白,在组织中检测出蓝色区而无绿色荧光区,说明GUS基因正常表达而GFP基因不能正常表达,根据“Cre基因是重组酶基因,经38℃热处理后可被激活表达,在此前提下组织中可检测出绿色荧光区”提示,可见GFP基因的正常表达需以Cre基因被激活表达为前提,即GFP基因自身无启动子,无法启动自身的表达。通过用Cre重组酶处理后,切割loxP序列,产生GFP基因的启动子,使GFP基因得以表达。由于Cre基因是重组酶基因,经38℃热处理后可被激活表达,因此热处理时间越长,越有利于基因的表达,绿色荧光区的面积就越大。