题目内容

17.某烧碱样品含有少量不与酸作用的杂质,为了测定其纯度,进行以下操作:
A.在250mL的容量瓶中准确配制250mL烧碱溶液
B.用碱式滴定管移取25mL烧碱溶液于锥形瓶中并滴入2滴甲基橙指示剂
C.在天平上准确称取烧碱样品m g,在烧杯中用蒸馏水溶解
D.将浓度为c mol•L-1的标准硫酸装入酸式滴定管,调整液面记下开始读数V1
E.在锥形瓶下垫一张白纸,滴定至橙色为止,记下读数V2就此实验完成下列填空:
(1)正确的操作步骤的顺序是(用编号字母填写):C→A→B→D→E.
(2)下列操作中可能使所测NaOH的质量分数偏低的是bd.
a.滴定操作中,锥形瓶残留少量蒸馏水
b.B步操作中,装入烧碱溶液之前未用待测液润洗
c.D步操作中酸式滴定管在装入标准H2SO4溶液前未用标准液润洗
d.读取硫酸体积时,开始时仰视读数,结束时俯视读数
(3)该烧碱样品纯度的计算式为$\frac{0.8c({V}_{2}-{V}_{1})}{m}$×100%.

分析 (1)实验时应先称量一定质量的固体,溶解后配制成溶液,量取待测液与锥形瓶中,然后用标准液进行滴定;
(2)结合c(NaOH)=$\frac{{c}_{酸}{V}_{酸}}{{V}_{碱}}$及不当操作使酸的体积偏小,则造成测定结果偏低;
(3)发生H2SO4+2NaOH=Na2SO4+2H2O,结合n=cV及反应计算n(NaOH),进一步求出样品的纯度.

解答 解:(1)实验时应先称量一定质量的固体,溶解后配制成溶液,量取待测液与锥形瓶中,然后用标准液进行滴定,正确的操作步骤是C→A→B→D→E,
故答案为:C→A→B→D→E;
(2)a.滴定操作中,锥形瓶残留少量蒸馏水,酸碱的物质的量不变,对实验无影响,故不选;
b.B步操作中,装入烧碱溶液之前未用待测液润洗,取NaOH的物质的量偏小,消耗酸的体积偏小,则造成测定结果偏低,故选;
c.D步操作中酸式滴定管在装入标准H2SO4溶液前未用标准液润洗,消耗酸的体积偏大,测定结果偏高,故不选;
d.读取硫酸体积时,开始时仰视读数,结束时俯视读数,酸的体积偏小,则造成测定结果偏低,故选;
故答案为:bd;
(3)H2SO4+2NaOH=Na2SO4+2H2O可知,n(NaOH)=2×(V2-V1)×10-3L×cmol/L×$\frac{250}{25}$=2c(V2-V1)×10-2mol,则该烧碱样品的纯度为$\frac{2c({V}_{2}-{V}_{1})×1{0}^{-2}mol×40g/mol}{mg}$×100%=$\frac{0.8c({V}_{2}-{V}_{1})}{m}$×100%,
故答案为:$\frac{0.8c({V}_{2}-{V}_{1})}{m}$×100%.

点评 本题考查物质的含量测定实验,为高频考点,把握中和测定原理的应用、实验操作、实验技能为解答的关键,侧重分析与实验能力的考查,注意酸碱的物质的量关系及结合计算式分析误差,题目难度不大.

练习册系列答案
相关题目
1.铜在我国有色金属材料的消费中仅次于铝,广泛地应用于电气、机械制造、国防等领域.科学家可以通过X射线测定铜及其化合物的相关结构.
①写出基态Cu原子的核外电子排布式:1s22s22p63s23p63d104s1或[Ar]3d104s1
②用晶体的X射线衍射法可以测得阿伏伽德罗常数.对金属铜的测定得到以下结果:晶胞为面心立方最密堆积,边长为361pm.又知铜的密度为9.00g/cm3,则铜晶胞的体积是4.7×10-23cm3,晶胞的质量是4.23×10-22克,阿伏伽德罗常数为6.01×1023mol-1(列式计算,已知Ar(Cu)=63.6).
③图是铜的某种氧化物的晶胞结构示意图1,可确定该晶胞中:阴离子的个数为4;阳离子的配位数是4.

④通过X射线推测胆矾中既含有配位键,又含有氢键,胆矾CuSO4•5H2O可写成[Cu(H2O)4]SO4•H2O,其结构示意图可简单表示如图2:
写出胆矾晶体中水合铜离子的结构简式(必须将配位键表示出来)
⑤下列说法正确的是BD(填字母).
A.在上述结构示意图中,所有氧原子都采用sp3杂化
B.在上述结构示意图中,存在配位键、共价键和离子键
C.胆矾是分子晶体,分子间存在氢键
D.胆矾中的水在不同温度下会分步失去
⑥往硫酸铜溶液中加入过量氨水,可生成[Cu(NH34]2+配离子.已知NF3与NH3的空间构型都是三角锥形,但NF3不易与Cu2+形成配离子,其原因是NF3分子中氟原子电负性强,吸电子,使得氮原子上的孤对电子难于与Cu2+形成配位键.
⑦Cu2O的熔点比Cu2S的高(填“高”或“低”),请解释原因Cu2O与Cu2S相比,阳离子相同、阴离子所带电荷也相同,但O2-的半径比S2-小,所以Cu2O的晶格能更大,熔点更高.
8.某研究小组在实验室探究氨基甲酸铵(NH2COONH4)分解反应平衡常数和水解反应速率的测定.
(1)将一定量纯净的氨基甲酸铵固体置于特制的密闭真空容器中(假设容器体积不变,固体试样体积忽略不计),在恒定温度下使其达到分解平衡:NH2COONH4(s)?2NH3(g)+CO2(g).实验测得不同温度下的平衡数据列于如表:
温度(℃)15.020.025.030.035.0
平衡总压强(kPa)5.78.312.017.124.0
平衡气体总浓度 (×10-3mol/L)2.43.44.86.89.4
①可以判断该分解反应已经达到化学平衡的是BC;
A.2v(NH3)═v(CO2
B.密闭容器中总压强不变
C.密闭容器中混合气体的密度不变
D.密闭容器中氨气的体积分数不变
②根据表中数据,列式计算25.0℃时氨基甲酸铵的分解平衡常数1.6×10-8(mol•L-13
③取一定量的氨基甲酸铵固体放在一个带活塞的密闭真空容器中,在25℃下达到分解平衡.若在恒温下压缩容器体积,氨基甲酸铵固体的质量增大(填“增加”、“减小”或“不变”);
④氨基甲酸铵分解反应的焓变△H>0;
(2)已知:NH2COONH4+2H2O?NH4HCO3+NH3•H2O.该研究小组分别用三份不同初始浓度的氨基甲酸铵溶液测定水解反应速率,得到c(NH2COO-)随时间变化趋势如图所示.
⑤计算25℃时,0~6min氨基甲酸铵水解反应的平均速率0.05mol/(L•min);
⑥根据图中信息,如何说明水解反应速率随温度升高而增大25℃反应物起始浓度较小,但0~6min的平均反应速率(曲线的斜率)仍比15℃大.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网