ÌâÄ¿ÄÚÈÝ
Ä¿Ç°ÆÕ±éÈÏΪ£¬ÖÊ×ÓºÍÖÐ×Ó¶¼ÊÇÓɱ»³ÆΪu¿ä¿ËºÍd¿ä¿ËµÄÁ½Àà¿ä¿Ë×é³ÉµÄ£®u¿ä¿Ë´øµçÁ¿Îª
e£¬d¿ä¿Ë´øµçÁ¿Îª-
e£¬eΪ»ùÔªµçºÉ£®ÏÂÁÐÂÛ¶ÏÖпÉÄÜÕýÈ·µÄÊÇ£¨¡¡¡¡£©
2 |
3 |
1 |
3 |
A£®ÖÊ×ÓÓÉ1¸öu¿ä¿ËºÍ1¸öd¿ä¿Ë×é³É£¬ÖÐ×ÓÓÉ1¸öu¿ä¿ËºÍ2¸öd¿ä¿Ë×é³É |
B£®ÖÊ×ÓÓÉ2¸öu¿ä¿ËºÍ1¸öd¿ä¿Ë×é³É£¬ÖÐ×ÓÓÉ1¸öu¿ä¿ËºÍ2¸öd¿ä¿Ë×é³É |
C£®ÖÊ×ÓÓÉ1¸öu¿ä¿ËºÍ2¸öd¿ä¿Ë×é³É£¬ÖÐ×ÓÓÉ2¸öu¿ä¿ËºÍ1¸öd¿ä¿Ë×é³É |
D£®ÖÊ×ÓÓÉ2¸öu¿ä¿ËºÍ1¸öd¿ä¿Ë×é³É£¬ÖÐ×ÓÓÉ2¸öu¿ä¿ËºÍ1¸öd¿ä¿Ë×é³É |
ÓÉÖÊ×Ó´øÒ»¸öµ¥Î»ÕýµçºÉ£¬ÖÐ×Ó²»´øµç£¬
ÉèÖÊ×ÓÖÐu¿ä¿Ë¡¢d¿ä¿Ë¸öÊý·Ö±ðÊÇx¡¢y£¬x¡¢yÈ¡ÕýÕûÊý£¬
Ôòx¡Á
e+y¡Á£¨-
e£©=1£¬
½âµÃx=2¡¢y=1£»
ÉèÖÐ×ÓÖÐu¿ä¿Ëd¿ä¿Ë¸öÊý·Ö±ðÊÇm¡¢n£¬m¡¢nÈ¡ÕýÕûÊý£®
m¡Á£¨
e£©+n¡Á£¨-
e£©=0£¬
½âµÃm=1¡¢n=2£¬
¹ÊÑ¡B£®
ÉèÖÊ×ÓÖÐu¿ä¿Ë¡¢d¿ä¿Ë¸öÊý·Ö±ðÊÇx¡¢y£¬x¡¢yÈ¡ÕýÕûÊý£¬
Ôòx¡Á
2 |
3 |
1 |
3 |
½âµÃx=2¡¢y=1£»
ÉèÖÐ×ÓÖÐu¿ä¿Ëd¿ä¿Ë¸öÊý·Ö±ðÊÇm¡¢n£¬m¡¢nÈ¡ÕýÕûÊý£®
m¡Á£¨
2 |
3 |
1 |
3 |
½âµÃm=1¡¢n=2£¬
¹ÊÑ¡B£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿