题目内容

【题目】已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣1,1].
(Ⅰ)求m的值;
(Ⅱ)若a,b,c∈R,且 =m,求证:a+2b+3c≥9.

【答案】解:(Ⅰ)函数f(x)=m﹣|x﹣2|,m∈R,故 f(x+2)=m﹣|x|,由题意可得m﹣|x|≥0的解集为[﹣1,1],
即|x|≤m 的解集为[﹣1,1],故m=1.
(Ⅱ)由a,b,c∈R,且 =m=1,
∴a+2b+3c=(a+2b+3c)(
=1+ + + +1+ + + +1
=3+ + + + + + ≥3+6=9,当且仅当 = = = = = =1时,等号成立.
所以a+2b+3c≥9
【解析】(Ⅰ)由条件可得 f(x+2)=m﹣|x|,故有m﹣|x|≥0的解集为[﹣1,1],即|x|≤m 的解集为[﹣1,1],故m=1.(Ⅱ)根据a+2b+3c=(a+2b+3c)( )=1+ + + +1+ + + +1,利用基本不等式证明它大于或等于9.
【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网