题目内容
【题目】已知椭圆 ,过点且不过点的直线与椭圆交于,两点,直线与直线交于点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若垂直于轴,求直线的斜率;
(Ⅲ)试判断直线与直线的位置关系,并说明理由.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)平行,理由见解析.
【解析】
试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先将椭圆方程化为标准方程,得到,,的值,再利用计算离心率;(Ⅱ)由直线的特殊位置,设出,点坐标,设出直线的方程,由于直线与相交于点,所以得到点坐标,利用点、点的坐标,求直线的斜率;(Ⅲ)分直线的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线和直线的方程,将椭圆方程与直线的方程联立,消参,得到和,代入到中,只需计算出等于即可证明,即两直线平行.
试题解析:(Ⅰ)椭圆的标准方程为.
所以,,.
所以椭圆的离心率.
(Ⅱ)因为过点且垂直于轴,所以可设,.
直线的方程为.
令,得.
所以直线的斜率.
(Ⅲ)直线与直线平行.证明如下:
当直线的斜率不存在时,由(Ⅱ)可知.
又因为直线的斜率,所以.
当直线的斜率存在时,设其方程为.
设,,则直线的方程为.
令,得点.
由,得.
所以,.
直线的斜率.
因为
,
所以.
所以.
综上可知,直线与直线平行.
练习册系列答案
相关题目