题目内容
【题目】某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式:
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数。
【答案】(1)(2)这列火车每天来回12次,才能使运营人数最多。每天最多运营人数为7920.
【解析】试题分析:(1)先设出一次函数的解析式,再代入,利用待定系数法进行求解;(2)先设出有关未知量,结合(1)结论,得到每天运营总人数关于车厢节数的函数,再利用二次函数求其最值.
试题解析:(1)设每天往返y次,每次挂x节车厢,由题意y=kx+b,当x=4时,y=16,当x=7时,y=10,
得到16=4k+b,10=7k+b.解得:k=-2,b=24,∴y=-2x+24 (4分)
设每天往返y次,每次挂x节车厢,由题意知,每天挂车厢最多时,运营人数最多,设每天运营S节车
厢,则S=xy=x(-2x+24)=-2x2+24x=-2(x-6)2+72,
所以当x=6时,Smax=72,此时y=12,则每日最多运营人数为110×72="7" 920(人).
答:这列火车每天往返12次,才能使运营人数最多,每天最多运营人数为7 920人.(10分)
练习册系列答案
相关题目