题目内容

【题目】如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.

(1)求证:AB为圆的直径;
(2)若AC=BD,求证:AB=ED.

【答案】
(1)证明:∵PG=PD,∴∠PDG=∠PGD,

∵PD为切线,∴∠PDA=∠DBA,

∵∠PGD=∠EGA,

∴∠DBA=∠EGA,

∴∠DBA+∠BAD=∠EGA+∠BAD,

∴∠BDA=∠PFA,

∵AF⊥EP,

∴∠PFA=90°.

∴∠BDA=90°,

∴AB为圆的直径;


(2)证明:连接BC,DC,则

∵AB为圆的直径,

∴∠BDA=∠ACB=90°,

在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,

∴Rt△BDA≌Rt△ACB,

∴∠DAB=∠CBA,

∵∠DCB=∠DAB,

∴∠DCB=∠CBA,

∴DC∥AB,

∵AB⊥EP,

∴DC⊥EP,

∴∠DCE为直角,

∴ED为圆的直径,

∵AB为圆的直径,

∴AB=ED.


【解析】(1)证明AB为圆的直径,只需证明∠BDA=90°;(2)证明Rt△BDA≌Rt△ACB,再证明∠DCE为直角,即可证明AB=ED.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网