题目内容
法国科学家阿尔贝?费尔和德国科学家彼得?格林贝格尔由于发现了巨磁电阻(GMR)效应,荣获了诺贝尔物理学奖.小明同学设计了如图所示的电路,来研究巨磁电阻的大小与有无磁场的关系.请分析回答:(1)断开S1,闭合S2,移动滑动变阻器R2的滑片,测得两电表的四组数据如下表所示.由此可知,无磁场时GMR的电阻大小为
实验序号 | 1 | 2 | 3 | 4 |
U/伏 | 1.00 | 1.25 | 2.00 | 2.50 |
I/安 | 2×10-3 | 2.5×10-3 | 4×10-3 | 5×10-3 |
实验序号 | 1 | 2 | 3 | 4 |
U/伏 | 0.45 | 0.91 | 1.50 | 1.79 |
I/安 | 0.3×10-3 | 0.6×10-3 | 1×10-3 | 1.2×10-3 |
(3)利用小明同学设计的电路并保持原有器材不变,你还可以进一步研究与巨磁电阻大小有关的问题是
分析:(1)要解决此题,需要掌握电阻的计算公式:R=
.
(2)要得出结论,分别计算出GMR存在磁场和不存在磁场时的电阻,然后进行比较.
(3)要解决此题,需要掌握电流对磁场强度的影响,及电流方向对磁场方向的影响.
U |
I |
(2)要得出结论,分别计算出GMR存在磁场和不存在磁场时的电阻,然后进行比较.
(3)要解决此题,需要掌握电流对磁场强度的影响,及电流方向对磁场方向的影响.
解答:解:(1)根据欧姆定律得,
在没有磁场时,GMR的电阻为:R=
=
=
=
=
=500Ω
故答案为:500.
(2)有磁场时,GMR的电阻为:R′=
=
=
=
=
=1500Ω
与无磁场时相比,GMR的电阻明显变大.
故答案为:有磁场时巨磁电阻的阻值明显变大.
(3)由于保持原有器材不变,所以可以通过移动R1的滑片改变其阻值,从而改变通电线圈中的电流,因此可以改变螺线管的磁性强弱.
同时可以通过改变线圈中电流的方向来改变螺线管的磁场方向.
故答案为:研究巨磁电阻的大小与磁场强弱的关系(或研究巨磁电阻的大小与磁场方向的关系).
在没有磁场时,GMR的电阻为:R=
U |
I |
1.00V |
2×10-3A |
1.25V |
2.5×10-3A |
2.00V |
4×10-3A |
2.50V |
5×10-3A |
故答案为:500.
(2)有磁场时,GMR的电阻为:R′=
U′ |
I′ |
0.45V |
0.3×10-3A |
0.91V |
0.6×10-3A |
1.50V |
1×10-3A |
1.79V |
1.2×10-3A |
与无磁场时相比,GMR的电阻明显变大.
故答案为:有磁场时巨磁电阻的阻值明显变大.
(3)由于保持原有器材不变,所以可以通过移动R1的滑片改变其阻值,从而改变通电线圈中的电流,因此可以改变螺线管的磁性强弱.
同时可以通过改变线圈中电流的方向来改变螺线管的磁场方向.
故答案为:研究巨磁电阻的大小与磁场强弱的关系(或研究巨磁电阻的大小与磁场方向的关系).
点评:此题主要考查了电阻的计算及影响螺线管磁性强弱的因素.对这样的探究题,要注意分析数据找出规律.
练习册系列答案
相关题目