题目内容
阅读与思考.
21世纪,能源问题是首先要解决的问题之一,随着人口的增加和经济的发展,能源的消耗量飞快地增长.从目前的消耗量计算,石油还能采50年,煤最多能采100多年.若全世界均按美国和加拿大的耗能水平(人均耗煤8.4吨/年)计算,即使人口增长率为零,地球上的煤也只能维持30多年,而石油和天然气只能维持10几年.
虽然地球上还有其他形式的能源,如太阳能、风能、地热能、水能等,但与煤和石油相比微不足道,不能满足人类的需要.相比之下,核能是解决能源危机的一个最有效的途径.核能是地球上储量最丰富的能源.又是高度密集的能源.它的效率是惊人的,1 kg核燃料所释放的能量相当于2 500 t煤或2 000 t石油.而且,核裂变发电技术已经成熟,它有其无法取代的优点.首先,是地球上核燃料资源储量丰富,已探明的矿至少有460万吨,可供人类使用200多年;其次,核能发电比较经济,总的算起来,核电厂的发电成本要比火电厂低15%~50%;第三,核电是清洁的能源,有利于保护环境.
所以,21世纪是核能发电的大发展时期.氢是一种很有前途的新的“二次能源”.液态氢已被用来作为人造卫星和宇宙飞船中的能源,但困难是不能大量制取.其原因是目前制取氢的办法是以消耗其他能源为代价的.若利用核聚变反应则非常有希望解决这一问题.因为海水中含有大量氢及其同位素氘和氚(据计算,一桶海水中能提取的氘的能量相当于300桶汽油).若将海水中所有的氘的核能都释放出来,它所产生的能量足以提供人类使用数百亿年.
然而,实现持续的可控核聚变,难度非常大.核聚变反应的温度大约需要几十亿度,在这样的高温下,氘、氚混合燃料形成高温等离子态.这里有许多问题需要解决,如怎样加热到如此高的温度?怎样盛装如此高温度的等离子体?这就是如何约束的问题.
目前,世界各国已建造多种类型的试验装置200多台.近年来,设在英国牛津附近的核聚变装置完成了一项可控核聚变试验.在圆形圈内,在2亿摄氏度下,氘、氚气体相遇成功爆炸,产生了200 kW的能量,试验持续了几分钟.虽然这距实际应用还有相当大的距离,技术上也还有许多难题需要解决.但已露出胜利的曙光.预计到21世纪50年代前后能实现原型示范的可控聚变反应.
可见,下世纪一旦核聚变能被利用起来,将会使人类彻底摆脱能源危机.我们设想,到那时,廉价的能源将使21世纪成为一个能量富足的时代,可生产出更丰富更新型的产品,而成本更为低廉.例如,可以从海洋中提取更多有用的元素,像金和铂,到那时,其价值不再是金钱的象征.那么利用金和铂耐腐蚀的优良特性,来制造耐腐蚀的储槽、阀门、管道等,可延长其使用寿命而不用频繁更换.
此外,从海水中提取矿物质的“核”工厂生产过程中的副产品——蒸馏水,也非常有用,可以通过管道将它们输送到水源短缺的地方,实施庞大的灌溉计划,改造农田,生产过程中产生的热量还可以送入城市,用于取暖或作为热源.核能除了发电之外,还可以用于炼钢、推动动力机械、海水淡化处理、建筑物供热采暖、空调制冷及热水供应等.
低温核供热反应堆是一种既清洁、经济又安全的理想新热源.建设一座20万千瓦的供热堆,每年消耗核燃料二氧化铀仅1 t,它可以为500万立方米的建筑物供暖.利用核能还可以对海水进行淡化处理,以解决缺水问题.
法国已设计了一种轻小型反应堆,功率为10~20万千瓦,只有10个大气压的运行压力,比较安全.利用堆芯产生的热量将海水加热蒸馏,每天可生产8万立方米淡水,可供15万人饮用.
中子照相已成为一种新的无损检验方法,它可以弥补X射线和γ射线照相的不足之处,进行一些它们鞭长莫及的工作.如可以检验手机、航天器、火箭等装置内部零件的结构状况和质量,进行考古文物内部的无损检验等.
可以预计,21世纪是核能与核技术在医学中广泛应用并取得重大发展的时代.除了现有的核医学诊断治疗技术之外,中子治疗癌症是比较有前途的方法之一.这是因为许多癌组织对硼有较好的吸收效果,同时硼又有吸收中子的能力,当它被癌组织吸收后,经中子辐照,硼-10变成锂-7,并放出α粒子,α粒子的射线能量较高,可以更有效地杀死癌细胞.
例如,日本有一脑癌患者就是利用这种方法治疗后,不仅痊愈了,而且还能驾驶卡车,简直不可思议.在交通运输领域,核能的利用将使其产生革命性的变革.核能舰船组成的远洋舰队可以在水上游弋几十年而不用补充燃料.如果将反应堆做得足够小,并解决防护问题,到那时,就能生产出核能汽车、核能坦克、核能火车、核能飞机.
核能还可作为宇宙飞船的动力,到那时,人们可以到其他星系去旅游.21世纪,人们可以对“老天爷”——天气发号施令.人类将充分利用核能与大自然抗衡.到那时,不会因气候和天气情况影响飞机的起降,没有飞机会因机场封冻而不能着陆,因为我们可设法在飞机水泥跑道下面安装蒸气管道.
不难预料,未来的世纪将是科学技术日新月异的时代,是人类学会和自然和谐相处的时代,是经济和文明继续高速发展的时代,也是核能与核技术全方位应用的新时代.未来的核能时代将成为人类历史上最光彩夺目、最美好的时代.
(李士 中国科学院核分析开放实验室)
(1)21世纪存在什么样的能源危机?为什么说核能是解决能源危机的一个最有效的途径?
(2)21世纪,核能除了发电之外,还有哪些方面的应用?
(3)人类社会现在所应用的能源很多来自千百万年前埋在地下的植物经过漫长的地质年代形成的化石能源(例如:石油、煤),如果有一天化石燃料枯竭了,你能否想出一些能替代这些化石能源的清洁能源.(至少写出三种)
阅读短文,回答问题:
在探究微观粒子性质的过程中,加速器是产生和研究各种形形色色粒子的最好工具.早在20世纪30年代,劳伦斯(E.Lawrence,1901~1958)就发明了回旋加速器;我国在1988年建成了北京正负电子对撞机.欧洲核子研究中心的正负电子对撞机是当今世界上能量最高的对撞机,其能量为100GeV,主加速器周长为27 km,目前正在建造的大型强子(质子-质子)对撞机能量高达16 TeV.
高能加速器的建造得益于科学技术的发展,如高真空技术、超导技术、计算机技术等.加速器在帮助人们进一步探索微观粒子世界奥秘的同时,在人们的生产、生活中也有着重要的作用.20世纪40年代.电子加速器开始用于癌症的治疗.粒子加速器还用于工业探伤、食品的防腐与保鲜、复合材料的生产以及医疗用品消毒等.
[文中eV是高能物理学中常用的能量单位的符号,称为电子伏.此外,还有keV(103eV)称为千电子伏;MeV(106eV)称为兆电子伏;GeV(106eV)称为吉电子伏;TeV(1012eV)称为太电子伏]
(1)加速器不仅在高能物理领域功勋卓著,而且在人们的生产和生活中作用重大,试举两例.
(2)阅读该文后,你还想知道什么?最想提的问题是什么?
(3)查阅相关资料,将你查到的微观粒子的名单列一清单(至少写出三个),并与同学们进行交流.
阅读下面关于核能发电的介绍,总结出核电站的特点.
所谓核能发电,就是利用“原子锅炉”燃烧核燃料来发电.那么,
所谓核能发电,就是利用“原子锅炉”燃烧核燃料来发电.那么,1千克核燃料铀能发出多少度电呢?说出来你也许不信,它能发800万度电,而1千克煤却只能发3度电.也就是说1千克核燃料铀发出的电与大约2400吨煤发出的电相同,所以,核能是新能源世界里的“巨人”.与其他能源相比,核能又是一种安全可靠的能源.例如,美国在往火力发电站运煤过程中,每年约有100人死于交通事故,而井下采煤,每采100万吨煤难免死亡几人.比较起来,核电站的风险要小得多.关于核电的成本,早在20世纪70年代初,在一些工业发达的国家已与火力发电成本相当,后来由于石油价格的上涨和核电技术的提高,核电成本已低于火力发电成本.在法国,核电的成本比火电要低30%.随着核电技术的发展进步,核电的成本将会更加低于火力、水力发电.