【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图1中将选项B的部分补充完整;
(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
【题目】如图, AB、BC的垂直平分线交于点P,
(1)求证:PA= PC.
(2)连接AC,
①若∠ABC=150°,证明△PAC是等边三角形.
②若∠ABC= °,△PAC是等腰直角三角形.(直接填结果,不需要说明)
【题目】已知今年小明的年龄是x岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的 还大1岁,小刚的年龄恰好为小明、小红、小华三个人年龄的和.试用含x的式子表示小刚的年龄,并计算当x=5时小刚的年龄.
【题目】计算:(1)2×(﹣4)2(2)(﹣6)×(﹣ + )(3)﹣56÷(﹣8)×( )(4)4.98×(﹣5)(5)25× ﹣(﹣25)× +25×(﹣ )(6)(﹣1)4﹣ ×[2﹣(﹣3)2](7)(﹣1 )× ×8﹣9÷(﹣ )2(8)﹣103+[(﹣4)2﹣(1﹣32)×2].
【题目】计算:(1)﹣8﹣4+6(2)(﹣52)﹣(+8)﹣(﹣4)(3)﹣8×(﹣15)(4)(﹣ )÷(﹣ )(5)﹣ (6)﹣3×(﹣ )3 .
【题目】在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出______环的成绩。
【题目】钟楼是云南大学的标志性建筑之一,某校教学兴趣小组要测量钟楼的高度,如图,他们在点A处测得钟楼最高点C的仰角为45°,再往钟楼方向前进至点B处测得最高点C的仰角为54°,AB=7m,根据这个兴趣小组测得的数据,计算钟楼的高度CD.(tan36°≈0.73,结果保留整数).
【题目】如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律… (1)第四个图形有个正方形组成,周长为cm.(2)第n个图形有个正方形组成,周长为cm.(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.
【题目】如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.
(1)图中与△BDE全等的三角形是 ,请加以证明;
(2)若AE=6 cm,AC=4 cm,求BE的长.
【题目】先化简,再求值:(m﹣1)2﹣m(n﹣2)﹣(m﹣1)(m+1),其中m和n是面积为5的直角三角形的两直角边长.