题目内容
【题目】如图,分别位于反比例函数y=,y=在第一象限图象上的两点A,B,与原点O在同一直线上,且.
(1)求反比例函数y=的表达式;
(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.
【答案】(1)y=;(2) 8.
【解析】试题分析:(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;
(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.
试题解析:
(1)作AE,BF分别垂直于x轴,垂足为E,F,
∴AE∥BF,∴△AOE∽△BOF,
∴===.
由点A在函数y=的图象上,
设A的坐标是,
∴==, ==,
∴OF=3m,BF=,
即B的坐标是.
又点B在y=的图象上,
∴=,解得k=9,
则反比例函数y=的表达式是y=.
(2)由(1)可知A,B,
又已知过A作x轴的平行线交y=的图象于点C,
∴C的纵坐标是.
把y=代入y=得x=9m,
∴C的坐标是,
∴AC=9m-m=8m.
∴S△ABC=×8m×=8.
练习册系列答案
相关题目