题目内容
【题目】用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n 个正六边形,则m,n满足的关系式是( )
A. 2m+3n=12B. m+n=8C. 2m+n=6D. m+2n=6
【答案】D
【解析】
正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.
正多边形的平面镶嵌,每一个顶点处的几个角之和应为360度,
而正三角形和正六边形内角分别为60°、120°,
根据题意可知60°×m+120°×n=360°,
化简得到m+2n=6.
故选D.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目