题目内容
【题目】如图,在△ABC中,BC=1,点P1 , M1分别是AB,AC边的中点,点P2 , M2分别是AP1 , AM1的中点,点P3 , M3分别是AP2 , AM2的中点,按这样的规律下去,PnMn的长为(n为正整数).
【答案】
【解析】解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,
可得:P1M1= ,P2M2= ,故PnMn= ,
所以答案是:
【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
练习册系列答案
相关题目