题目内容
【题目】如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.
(1)求这两个函数的表达式;
(2)求△AOB的面积S.
【答案】(1)y=ax+b,y=3x﹣5;(2)
【解析】
试题分析:(1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;
(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
解:
(1)设直线OA的解析式为y=kx,
把A(3,4)代入得4=3k,解得k=,
所以直线OA的解析式为y=x;
∵A点坐标为(3,4),
∴OA==5,
∴OB=OA=5,
∴B点坐标为(0,﹣5),
设直线AB的解析式为y=ax+b,
把A(3,4)、B(0,﹣5)代入得,解得,
∴直线AB的解析式为y=3x﹣5;
(2)∵A(3,4),
∴A点到y轴的距离为3,且OB=5,
∴S=×5×3=.
练习册系列答案
相关题目