题目内容
【题目】随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为 开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测 量人员在瀑布的对面山上 D 点处测得瀑布顶端 A 点的仰角是 30°,测得瀑布底端 B 点的俯角是 10°,AB 与水平面垂直.又在瀑布下的水平面测得 CG=27m, GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点 F).斜坡 CD=20m, 坡角∠ECD=40°.求瀑布 AB 的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)
【答案】瀑布 AB 的高度约为 45.4 米.
【解析】
过点 D 作 DM⊥CE,交 CE 于点 M,作 DN⊥AB,交 AB 于点 N,在 Rt△ CMD 中,通过解直角三角形可求出 CM 的长度,进而可得出 MF、DN 的长度, 再在 Rt△BDN、Rt△ADN 中,利用解直角三角形求出 BN、AN 的长度,结合 AB=AN+BN 即可求出瀑布 AB 的高度.
如图,过点 D 作 DM⊥CE,交 CE 于点 M,作 DN⊥AB,交 AB 于点 N,
在 Rt△CMD 中,CD=20m,∠DCM=40°,∠CMD=90°,
∴CM=CDcos40°≈15.4m,DM=CDsin40°≈12.8m,
∴DN=MF=CM+CG+GF=60m,
在 Rt△BDN 中,∠BDN=10°,∠BND=90°,DN=60m,
∴BN=DNtan10°≈10.8m,
在 Rt△ADN 中,∠ADN=30°,∠AND=90°,DN=60m,
∴AN=DNtan30°≈34.6m,
∴AB=AN+BN=45.4m,
答:瀑布 AB 的高度约为 45.4 米.
【题目】某快递公司计划购买A型和B型两种货车共8辆,其中每辆车的价格以及每辆车的运载量如下表:
A型 | B型 | |
价格(万元/台) | m | n |
运载量(吨/车) | 20 | 30 |
若购买A型货车1辆,B型货车3辆,共需67万元;若购买A型货车3辆,B型货车2辆,共需75万元.
(1)求m,n的值;
(2)若每辆A型货车每月运载量500吨,每辆B型货车每月运载量750吨,为确保这8辆车每月的运载量总和不少于4750吨,且该公司购买A型和B型货车的总费用不超过124万元.请你设计一个方案,使得购车总费用最少.
【题目】背景阅读:
意大利著名数学家裴波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,,其中从第三个数起,每一个数都等于它前面两个数的和.为了纪念这个著名的发现,人们将这组数命名为裴波那契数列.
实践操作:
(1)写出裴波那契数列的前10个数;
(2)裴波那契数列的前2017个数中,有多少个奇数?
(3)现以这组数的各个数作为正方形的边长构造如图1的正方形系列:再分别从左到右取2个、3个、4个、5个正方形拼成如下矩形记为①、②、③、④、⑤……
(i)通过计算相对应长方形的周长填写表(不计拼出的长方形内部的线段)
序号 | ① | ② | ③ | ④ | ⑤ | …… |
周长 | 6 | 10 | …… |
(ii)若按此规律继续拼成长方形,求序号为⑩的长方形的面积和周长.