题目内容

已知关于x的方程数学公式是否存在正数m,使方程的两个实数根的平方和等于224?若存在,求出满足条件的m的值.

解:假设存在,则有x12+x22=224.
∵x1+x2=4m-8,
x1x2=4m2
∴(x1+x22-2x1x2=224.
即(4m-8)2-2×4m2=224,
∴m2-8m-20=0,
(m-10)(m+2)=0,
∴m1=10,m2=-2.
∵△=(m-2)2-m2=4-4m≥0,
∴0<m≤1,
∴m1=10,m2=-2都不符合题意,
故不存在正数m,使方程的两个实数根的平方和等于224.
分析:利用根与系数的关系,化简x12+x22=224,即(x1+x22-2x1x2=224.根据根与系数的关系即可得到关于m的方程,解得m的值,再判断m是否符合满足方程根的判别式.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.考查了根与系数的关系,也考查了存在性问题的解题方法和格式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网