题目内容
解方程: .
如果一个多边形是轴对称图形,那么这个多边形可以是_____(写出一个即可).
如图,已知四边形ABCD的一组对边AD、BC的延长线相交于点E.另一组对边AB、DC的延长线相交于点F,若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,则AD的长为_____(用含n的式子表示).
如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )
A. B. C. D.
生活中,有人喜欢把传送的便条折成“”形状,折叠过程按图①、②、③、④的顺序进行(其中阴影部分表示纸条的反面):
如果由信纸折成的长方形纸条(图①)长为2 6 厘米,分别回答下列问题:
(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BE=_____厘米; 在图④中,BM=______厘米.
(2)如果长方形纸条的宽为x厘米,现不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(结果用x表示).
已知,,且A-B中不含有x的项,求:的值.
计算:=_____________.
如图,□ABCD的边AD是△ABC外接圆⊙O的切线,切点为A,连接AO并延长交BC于点E,交⊙O于点F,过点C作直线CP交AO的延长线于点P,且∠BCP=∠ACD.
(1)求证:PC是⊙O的切线;
(2)若∠B=67.5°,BC=2,求线段PC,PF与弧CF所围成的阴影部分的面积S.
如图所示,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )
A. 三角形的稳定性 B. 两点之间线段最短 C. 两点确定一条直线 D. 垂线段最短