题目内容
已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)写出满足条件的k的最大整数值,并求此时方程的根.
如图,在平面直角坐标系中,每个最小方格的边长均为1个单位,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:点P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),….根据这个规律,求点P2018的坐标.
某中学现有学生2870人,学校为了丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:
(1)图1中“电脑”部分所对应的圆心角为 度;
(2)样本容量为 ;
(3)在图2中,将“体育”部分的图形补充完整;
(4)估计育才中学现有的学生中,约有 人爱好“书画”.
点A(a-1,a-3)在x轴上,则点B(a-2,2a-3) 在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).
小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:
建立函数模型:
设矩形小花园的一边长为米,篱笆长为米.则关于的函数表达式为 ;
列表(相关数据保留一位小数):
根据函数的表达式,得到了与的几组值,如下表:
描点、画函数图象:
如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,
根据描出的点画出该函数的图象;
观察分析、得出结论:
根据以上信息可得,当= 时,有最小值.
由此,小强确定篱笆长至少为 米.
如图,在平面直角坐标系中,点,分别在轴、 轴上, . 先将线段沿轴翻折得到线段,再将线段绕点顺时针旋转30°得到线段,连接. 若点的坐标为 ,则线段的长为____________.
有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且AB⊥CD. 入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )
A. A→O→D B. C→A→O→ B C. D→O→C D. O→D→B→C
已知一组数据:3,3,4,5,5,则它的方差为____________
如图,E,F分别是矩形ABCD的边AB,AD上的点, .
(1)求证: AF=CD.
(2)若AD=2,△EFC的面积为,求线段BE的长.