题目内容
如图所示,已知 DC 平分∠ACB,∠B=70°,∠ACB=50°,DE∥BC,求∠EDC 与∠BDC 的度数.
如图,在菱形ABCD中,点E为线段CD的中垂线与对角线BD的交点,连接AE。∠ABC=70°,则∠AEB=______°.
如图,在平行四边形中,,点是的中点,连接并延长,交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求菱形的面积.
在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
A. B. C. D.
如图,已知直线l1∥l2,点A、B分别在l1与l2上.直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
如图,点 A,C,F,B 在同一直线上,CD 平分∠ECB,FG∥CD.若∠ECA 为 α 度,则∠GFB为________度(用关于 α 的代数式表示).
如图,把一块含有 45°角的直角三角板的两个顶点放在直尺的对边上. 如果∠1=15°,那么∠2 的度数是( )
A. 15° B. 25° C. 30° D. 35°
如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED= °
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).
先化简,再求值:,其中a=2sin60°-3tan45°