题目内容
如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( )
A. 2π B. 4π C. 6π D. 8π
如图,在平面直角坐标系中,四边形为菱形,点,的坐标分别为、,动点从点出发,以每秒个单位的速度沿向终点运动,连接并延长交于点,过点作,交于点,连接,当动点运动了秒时.
(1)点的坐标为________,点的坐标为________(用含的代数式表示);
(2)记的面积为,求与的函数关系式,并求出当取何值时,有最大值,最大值是多少?
(2)在出发的同时,有一动点从点开始在线段上以每秒个单位长度的速度向点移动,试求当为何值时,与相似.
如图,△ABC中,A、B两个顶点在轴的上方,点C的坐标是(?1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. B. C. D.
有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).
①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
②如果方程M有两根符号相同,那么方程N的两根符号也相同;
③如果方程M和方程N有一个相同的根,那么这个根必是x=1;
④如果5是方程M的一个根,那么是方程N的一个根.
已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____
下列各数:π,sin30°,﹣ ,其中无理数的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
已知:如图,点A、B、C、D在一条直线上,AC=DB,AE=DF,BE=CF.求证:∠E=∠F.
我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
用配方法说明代数式是完全平方式时,的值是________.