题目内容
【题目】如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为 .
【答案】y=-0.5x+3
【解析】此题首先分别求出A,B两个点的坐标,得到OA,OB的长度,再根据勾股定理求出AB,再求出OB′,然后根据已知得到BM=B′M,设BM=x,在Rt△B′OM中利用勾股定理求出x,这样可以求出OM,从而求出了M的坐标,最后用待定系数法求直线的解析式.
解:当x=0时,y=8;当y=0时,x=6,
∴OA=6,OB=8,
∴AB=10,
根据已知得到BM=B'M,
AB'=AB=10,
∴OB'=4,设BM=x,则B'M=x,
OM=8﹣x,在直角△B'MO中,x2=(8﹣x)2+42,
∴x=5,
∴OM=3,
∴M(0,3),
设直线AM的解析式为y=kx+b,把M(0,3),A(6,0)代入其中
得:
∴k=﹣,b=3,
∴y=﹣x+3.
练习册系列答案
相关题目