题目内容
若记f(x)=x2 |
1+x2 |
12 |
1+12 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
分析:由f(1)f(
)可得:f(2)=
=
;从而f(1)+f(2)+f(
)=
+1=2-
.所以f(1)+f(2)+f(
)+f(3)+f(
)+…+f(n)+f(
)=n-
(n为正整数).
1 |
2 |
22 |
1+22 |
4 |
5 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
2 |
解答:解:∵f(1)=
=
;f(
)=
=
,
得f(2)=
=
;
∴f(1)+f(2)+f(
)=
+1=2-
.
故f(1)+f(2)+f(
)+f(3)+f(
)+…+f(n)+f(
)=n-
.(n为正整数)
12 |
1+12 |
1 |
2 |
1 |
2 |
(
| ||
1+(
|
1 |
5 |
得f(2)=
22 |
1+22 |
4 |
5 |
∴f(1)+f(2)+f(
1 |
2 |
1 |
2 |
1 |
2 |
故f(1)+f(2)+f(
1 |
2 |
1 |
3 |
1 |
n |
1 |
2 |
点评:考查了函数值,解答此题关键是根据题中所给的式子找出规律,再解答.
练习册系列答案
相关题目