题目内容
(2013•昆山市二模)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为2
,则a的值是
3 |
2+
2 |
2+
.2 |
分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.
解答:解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵AB=2
,
∴AE=
,PA=2,
∴PE=1.
∵点D在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
.
∵⊙P的圆心是(2,a),
∴点D的横坐标为2,
∴OC=2,
∴DC=OC=2,
∴a=PD+DC=2+
.
故答案为2+
.
∵AB=2
3 |
∴AE=
3 |
∴PE=1.
∵点D在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
2 |
∵⊙P的圆心是(2,a),
∴点D的横坐标为2,
∴OC=2,
∴DC=OC=2,
∴a=PD+DC=2+
2 |
故答案为2+
2 |
点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.
练习册系列答案
相关题目