题目内容
【题目】2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.
(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?
(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m3,每辆小车每天运送沙石120m3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?
【答案】(1)1.6,1.4;(2)有三种租车方案,租5辆大车和5辆小车时,租车费用最低,最低费用是8500元.
【解析】
试题分析:(1)首先根据题意,设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,然后根据“空列”项目总共需要60.8亿元,以及每千米水上建设费用比陆地建设费用多0.2亿元,列出二元一次方程组,再解方程组,求出每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元即可.
(2)首先根据题意,设每天租m辆大车,则需要租10﹣m辆小车,然后根据每天至少需要运送沙石1600m3,以及每天租车的总费用不超过9300元,列出一元一次不等式组,判断出施工方有几种租车方案;最后分别求出每种租车方案的费用是多少,判断出哪种租车方案费用最低,最低费用是多少即可.
试题解析:(1)设每千米“空列”轨道的水上建设费用需要x亿元,每千米陆地建设费用需y亿元,
则:,解得:.
所以每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
答:每千米“空列”轨道的水上建设费用需要1.6亿元,每千米陆地建设费用需1.4亿元.
(2)设每天租m辆大车,则需要租10﹣m辆小车,
则:,∴,
∴施工方有3种租车方案:①租5辆大车和5辆小车;②租6辆大车和4辆小车;③租7辆大车和3辆小车;
①租5辆大车和5辆小车时,租车费用为:1000×5+700×5=5000+3500=8500(元)
②租6辆大车和4辆小车时,租车费用为:1000×6+700×4=6000+2800=8800(元)
③租7辆大车和3辆小车时,租车费用为:1000×7+700×3=7000+2100=9100(元)
∵8500<8800<9100,∴租5辆大车和5辆小车时,租车费用最低,最低费用是8500元.