题目内容

(2013•南京二模)如图,点A1、A2、A3、A4、A5在⊙O上,且
A1A2
=
A2A3
=
A3A4
=
A4A5
=
A5A1
,B、C分别是A1A2、A2A3上两点,A1B=A2C,A5B与A1C相交于点D,则∠A5DC的度数为
108°
108°
分析:首先证明△A1A5B≌△A2A1C,然后依据全等三角形的对应角相等以及三角形的外角的性质,即可证得∠A5DC=∠A5A1A2从而求解.
解答:解:∵
A1A2
=
A2A3
=
A3A4
=
A4A5
=
A5A1

∴每段弧的度数是:
360
5
=72°,
A5A1A2
的度数是:3×72=216°,
∴∠A5A1A2=108°.
∵在△A1A5B和△A2A1C中,
A1A5=A1A2
A5A1B=∠A1A2C
A1B=A2C

∴△A1A5B≌△A2A1C(SAS),
∴∠A1A5B=∠A2A1C,
∴∠A5DC=∠A1A5D+∠A5A1D=∠A5A1D+∠A2A1C=∠A5A1A2=108°.
故答案是:108°.
点评:本题考查了弧、弦、圆心角的关系,以及全等三角形的判定与性质,正确证明∠A5DC=∠A5A1A2是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网