题目内容
(1999•武汉)已知:如图,在直角坐标系中,直线AB交y轴于点A,交x轴于点B,其解析式为y=-x+2.又O1是x轴上一点,且⊙O1与直线AB切于点C,与y轴切于原点O.(1)求点C的纵坐标;
(2)以AO为直径作⊙O2,交直线AB于D,交⊙O1于N,连ON并延长交CD于G,求△ODG的面积;
(3)另有一圆过点O1,与y轴切于点O2,与直线AB交于M、P两点,求证:O1M•O1P=2.
【答案】分析:(1)由解析式解出两点的坐标,过C点作CH垂直x轴,进而求纵横坐标.
(2)设直线AB与⊙O2的交点为D连接两点,求出CD,然后求出DG,从而求出面积.
(3)连接O1C,设⊙O1半径为r,由相似定理,进而证明.
解答:(1)解:由y=-x+2,得OA=2,OB=
∴AB=,
由AC=2,得CB=,
过C点作CH⊥x轴,垂足为H,得CH∥y轴,
则,
CH=,即点C的纵坐标为.
(2)解:∵OA为⊙O2的直径,
∴OD⊥AB,
由OD•AB=OA•0B,得OD=,
则AD==,
CD=2-=.
设DG=x,由切割线定理得GD•GA=GN•GO.
∴x(x+)=(-x)2.解得:x=,∴DG=,
∴S△ODG=OD•DG=.
(3)证明:连接O1C,设⊙O1半径为r,
将C点纵坐标代入y=-x+2,得x=,
∴OH=,O1H=-r.
在Rt△CHO1中,由勾股定理得.
故⊙O1和⊙O2都是半径为1的等圆,
过点O1且与y轴切于点O2的圆是以N为圆心,1为半径的圆.
作⊙N的直径O1Q,连接PQ.O1Q=2,O1C=1.
∵∠PQO1=∠CMO1,
∴Rt△PQO1∽Rt△CMO1,
∴,
∴O1M•O1P=O1Q•O1C=2×1=2.
点评:本题主要考查一次函数的应用,本题比较烦,计算和证明都要仔细.
(2)设直线AB与⊙O2的交点为D连接两点,求出CD,然后求出DG,从而求出面积.
(3)连接O1C,设⊙O1半径为r,由相似定理,进而证明.
解答:(1)解:由y=-x+2,得OA=2,OB=
∴AB=,
由AC=2,得CB=,
过C点作CH⊥x轴,垂足为H,得CH∥y轴,
则,
CH=,即点C的纵坐标为.
(2)解:∵OA为⊙O2的直径,
∴OD⊥AB,
由OD•AB=OA•0B,得OD=,
则AD==,
CD=2-=.
设DG=x,由切割线定理得GD•GA=GN•GO.
∴x(x+)=(-x)2.解得:x=,∴DG=,
∴S△ODG=OD•DG=.
(3)证明:连接O1C,设⊙O1半径为r,
将C点纵坐标代入y=-x+2,得x=,
∴OH=,O1H=-r.
在Rt△CHO1中,由勾股定理得.
故⊙O1和⊙O2都是半径为1的等圆,
过点O1且与y轴切于点O2的圆是以N为圆心,1为半径的圆.
作⊙N的直径O1Q,连接PQ.O1Q=2,O1C=1.
∵∠PQO1=∠CMO1,
∴Rt△PQO1∽Rt△CMO1,
∴,
∴O1M•O1P=O1Q•O1C=2×1=2.
点评:本题主要考查一次函数的应用,本题比较烦,计算和证明都要仔细.
练习册系列答案
相关题目