题目内容
(2009•中山)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)
【答案】分析:过点P作PC⊥AB,C是垂足.AC与BC就都可以根据三角函数用PC表示出来.根据AB的长,得到一个关于PC的方程,解出PC的长.从而判断出这条高速公路会不会穿越保护区.
解答:解:过点P作PC⊥AB,C是垂足.
则∠APC=30°,∠BPC=45°,
AC=PC•tan30°,BC=PC•tan45°.
∵AC+BC=AB,
∴PC•tan30°+PC•tan45°=100km,
∴PC=100,
∴PC=50(3-)≈50×(3-1.732)≈63.4km>50km.
答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.
点评:解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
解答:解:过点P作PC⊥AB,C是垂足.
则∠APC=30°,∠BPC=45°,
AC=PC•tan30°,BC=PC•tan45°.
∵AC+BC=AB,
∴PC•tan30°+PC•tan45°=100km,
∴PC=100,
∴PC=50(3-)≈50×(3-1.732)≈63.4km>50km.
答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.
点评:解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
练习册系列答案
相关题目