题目内容
数轴上表示-2的点与原点的距离是 .
因式分【解析】a2(b﹣a)﹣4(b﹣a)=_____.
“白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.
(1)要使每天的利润为4000元,裤子的定价应该是多少元?
(2)如何定价可以使每天的利润最大?最大利润是多少?
如图,在半径为3,圆心角为90°的扇形ACB内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是( )
A. B. C. D.
在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是a,最小的积是b.
(1)求a,b的值;
(2)若|x+a|+|y-b|=0,求(x+y)÷(x-y)的值.
数轴上的点A到原点的距离是10,则点A表示的数为( )
A. 10或-10 B. 10 C. -10 D. 5或-5
已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为 ;
(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
已知实数a、b满足a+b=2,ab=,则a﹣b=( )
A. 1 B. ﹣ C. ±1 D. ±
已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.
(1)如图,当∠ACB=90°时
①求证:△BCM≌△ACN;
②求∠BDE的度数;
(2)当∠ACB=α,其它多件不变时,∠BDE的度数是 (用含α的代数式表示)
(3)若△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.