题目内容
已知2x-3y=-4,求[(2x-y)2-2(x+y)(2x-y)+4xy]÷(-2y)的值.
两个有理数互为相反数,则它们的和为( )
A. ﹣1 B. 0 C. 1 D. 不能确定
如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
(1)求该抛物线的表达式和∠ACB的正切值;
(2)如图2,若∠ACP=45°,求m的值;
(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.
问题背景
在△ABC中,AB,BC,AC的长分别为,,,求这个三角形的面积.晓辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点三角形ABC(即△ABC的三个顶点都在小正方形的顶点处),如图①所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你直接写出△ABC的面积:________.
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC的三边长分别为a,2a,a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
探索创新
(3)若△ABC的三边长分别为,,2 (m>0,n>0,且m≠n),试运用构图法(自己重新设计一个符合结构特征的网格)求出这个三角形的面积.
把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
如图,在△ABC中,∠C=90°,AD是角平分线,AC=5,DC=3,求点D到AB的距离.
如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
A. 1 B. 2 C. 3 D. 4
计算:(1);(2);
(3)4×(﹣3)2﹣5×(﹣3)+6;(4).
已知:如图,∠A=90°,BC∥AD,AB=6cm,点P从A出发沿射线AD运动,速度是每秒1cm,点R从点B出发沿射线BC运动,速度是每秒2cm,点Q在点P的右侧,且PQ=10cm,时间为t秒;
求:(1)△PQR的面积;
(2)当t=1秒时,求PR的长;
(3)当t为何值时,△PQR是等腰三角形?