题目内容
在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为_____.
如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以点A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为( )
A. 16 B. 15 C. 14 D. 13
(1)计算:;
(2)先化简,再求值:( +)÷,其中x=2.
如图,已知抛物线过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
如图,在平面直角坐标系中,的三个顶点分别是,,.
将以点C为旋转中心旋转,画出旋转后对应的,平移ABC,若A的对应点的坐标为,画出平移后对应的;
若将绕某一点旋转可以得到,请直接写出旋转中心的坐标.
如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是( )
A. cm B. cm C. cm D. 30cm
在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.
(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;
(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.
一个正常人的心跳平均每分钟70次,一天大约跳的次数用科学记数法表示这个结果是( )
A. 1.008×105 B. 100.8×103 C. 5.04×104 D. 504×102
在同一平面直角坐标系中,函数y=mx+m与(m≠0)的图象可能是( )
A. B. C. D.