题目内容
计算(
+
+
+
)(1-
-
-
-
-
)-(
+
+
+
+
)(1-
-
-
-
)的结果是 .
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
分析:可设
+
+
+
=a,原式变形为a(1-a-
)-(a+
)(1-a),再去括号、合并同类项即可求解.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
1 |
6 |
解答:解:设
+
+
+
=a,则
原式=a(1-a-
)-(a+
)(1-a)
=a-a2-
a-a+a2-
+
a
=-
.
故答案为:-
.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
原式=a(1-a-
1 |
6 |
1 |
6 |
=a-a2-
1 |
6 |
1 |
6 |
1 |
6 |
=-
1 |
6 |
故答案为:-
1 |
6 |
点评:考查了有理数的混合运算,关键是运用换元法设
+
+
+
=a,将原式变形计算求解.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
练习册系列答案
相关题目