题目内容

精英家教网如图,是一个风筝的平面示意图,四边形ABCD是等腰梯形,E、F、G、H分别是各边的中点,假设图中阴影部分所需布料的面积为S1,其它部分所需布料的面积之和为S2(边缘外的布料不计),则(  )
A、S1>S2B、S1<S2C、S1=S2D、不确定
分析:连接BD,根据中位线的性质可得到△AFE∽△ABD,相似比为1:2,从而可求得其面积比,同理可求得△CGH,△BGF,△DEH分别与△BCD,△ABC,△ACD的面积比,此时就不难求得S1与S2的关系了.
解答:精英家教网解:连接BD,
根据E,F分别是AB,AD的中点,则EF是△ABD的中位线,EF∥BD,且EF=
1
2
•BD,△AFE∽△ABD,
且相似比是1:2,相似三角形的面积的比等于相似比的平方,
因而△AFE的面积是△ABD面积的
1
4

同理,△CGH,△BGF,△DEH分别是△BCD,△ABC,△ACD面积的
1
4

则△AFE,△CGH,△BGF,△DEH是梯形ABCD的面积的
1
2
,则S1=S2,故选C.
点评:本题主要考查了中位线定理,利用了三角形相似的性质,相似三角形的面积的比等于相似比的平方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网