题目内容
【题目】如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD= .
(1)求证:CD∥BF;
(2)求⊙O的半径;
(3)求弦CD的长.
【答案】
(1)证明:∵BF是⊙O的切线,
∴AB⊥BF,
∵AB⊥CD,
∴CD∥BF
(2)解:连接BD,∵AB是直径,
∴∠ADB=90°,
∵∠BCD=∠BAD,cos∠BCD= ,
∴cos∠BAD= ,
又∵AD=3,
∴AB=4,
∴⊙O的半径为2
(3)解:∵∠BCD=∠DAE,
∴cos∠BCD=cos∠DAE= ,AD=3,
∴AE=ADcos∠DAE=3× = ,
∴ED= ,
∴CD=2ED= .
【解析】(1)由BF是⊙O的切线得到AB⊥BF,而AB⊥CD,由此即可证明CD∥BF;(2)连接BD,由AB是直径得到∠ADB=90°,而∠BCD=∠BAD,cos∠BCD= ,所以cos∠BAD= ,然后利用三角函数即可求出⊙O的半径;(3)由于cos∠DAE= ,而AD=3,由此求出AE,接着利用勾股定理可以求出ED,也就求出了CD.
练习册系列答案
相关题目
【题目】2018年俄罗斯世界杯组委会对世界杯比赛用球进行抽查,随机抽取了100个足球,检测每个足球的质量是否符合标准,超过或不足部分分别用正、负数来表示,记录如表:
与标准质量的差值(单位:克) | ﹣4 | ﹣2 | 0 | 1 | 3 | 6 |
个数 | 10 | 13 | 30 | 25 | 15 | 7 |
(1)平均每个足球的质量比标准质量多还是少?用你学过的方法合理解释;
(2)若每个足球标准质量为420克,则抽样检测的足球的总质量是多少克?