题目内容
(2013年四川广安9分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙0的切线.
(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
解:(1)证明:如图,连接OD,
∵AB为⊙O的直径,∴∠ADB=90°。
∴AD⊥BC。
∵AB=AC,∴AD平分BC,即DB=DC。
∵OA=OB,∴OD为△ABC的中位线。
∴OD∥AC。
∵DE⊥AC,∴OD⊥DE。
∵OD是⊙O的半径,∴EF是⊙O的切线。
(2)∵∠DAC=∠DAB,∴∠ADE=∠ABD。
∴在Rt△ADB中,。
∵AB=10,∴AD=8,
∵在Rt△ADE中,,∴。
∵OD∥AE,∴△FDO∽△FEA。
∴,即,解得。
【解析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论。
(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF。
考点:圆周角定理,等腰三角形的性质,三角形中位线的性质,平行的性质,切线的判定,锐角三角函数定义,相似三角形的判定和性质。
(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.
|
空调 |
彩电 |
进价(元/台) |
5400 |
3500 |
售价(元/台) |
6100 |
3900 |
设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)商场有哪几种进货方案可供选择?
(3)选择哪种进货方案,商场获利最大?最大利润是多少元?