题目内容
关于、的二元一次方程组的解满足不等式,则的取值范围是________.
如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C. 2 D. 2
在学校组织的知识竞赛中,八(1)班比赛成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将八(1)班成绩整理并绘制成如下的统计图.
请你根据以上提供的信息解答下列问题:
(1)请根据统计图的信息求出成绩为C等级的人数;
(2)将表格补充完整.
如图1,已知AE平分∠BAC, CE平分∠ACD,且∠ EAC+∠ACE=90°
(1)请你判断AB与CD的位置关系,并说明理由;
(2)如图2,当∠E=90°,且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E移动时,请你判断∠BAE与∠MCD是否存在确定的数量关系,并说明理由;
(3)如图3,若P为线段AC上一定点,点Q为直线CD上一动点,且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外),请你猜想∠CPQ+∠CQP与∠BAC有何数量关系,并说明理由.
已知,3a+b-1的平方根是±4,c是的整数部分,求a+b+3c的平方根.
如图,线段经过平移得到线段,其中点,的对应点分别为点,,这四个点都在格点上.若选段上有一个点,则点在上的对应点的坐标为( )
A. B. C. D.
(2017浙江省温州市)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.
(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;
(2)若区域Ⅰ满足BC=2:3,区域Ⅱ四周宽度相等.
①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.
为参加2018年“初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是( )
A. 8.5,8.75 B. 8.5,9 C. 8.5,8.5 D. 8.64,9
定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a≤b时min{a,b}=a.如:min{1,-3}=﹣3,min{﹣4,﹣2}=﹣4,则min{﹣x2+2,﹣x}的最大值是( )
A. ﹣1 B. ﹣2 C. 1 D. 0