题目内容
先化简,再求值: ,其中a=
如图,AB是半圆O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,,AD=3.给出下列结论:①AC平分∠BAD;②△ABC∽△ACE;③AB=3PB;④S△ABC=5,其中正确的是__________(写出所有正确结论的序号).
在□ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.
(1)求证:四边形EHFG是平行四边形;
(2)□ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;
(3)□ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).
计算-?=______.
下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
在函数 (k为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小关系为____________.(用“<”连接)
如图,菱形ABCD中,∠D=135°,AD=6,CE=2,点P是线段AC上一动点,点F是线段AB上一动点,则PE+PF的最小值是( )
A. 3 B. 6 C. 2 D. 3
有3个完全相同的小球,把它们分别标号为2,3,6,放在一个不透明的口袋中.从口袋中随机摸出两个小球.用画树状图(或列表)的方法,求摸出的两个小球均能被3整除的概率.
对于平面直角坐标系中的图形,,给出如下定义:为图形上任意一点,为图形上任意一点,如果,两点间的距离有最小值,那么称这个最小值为图形,间的“闭距离”,记作(,).
已知点(,6),(,),(6,).
(1)求(点,);
(2)记函数(,)的图象为图形,若(,),直接写出的取值范围;
(3)的圆心为(t,0),半径为1.若(,),直接写出t的取值范围.