题目内容

己知:如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙0交AB于点D.
(1)若tan∠ABC=数学公式,AC=6,求线段BD的长.
(2)若点E为线段BC的中点,连接DE.求证:DE是⊙0的切线.

(1)解:∵tan∠ABC=,AC=6,
∴BC=8,
由勾股定理得:AB=10,
∵∠ACB=90°,AC为直径,
∴BC是圆O的切线,
∵BDA是圆的割线,
∴BC2=BD×AB,
∴BD=6.4,
答:线段BD的长是6.4.

(2)证明:连接OD、CD,
∵AC为圆O的直径,
∴∠CDA=90°,
∴∠BDC=180°-90°=90°,
∵E为BC的中点,
∴DE=BC=CE,
∴∠ECD=∠EDC,
∵OD=OC,
∴∠OCD=∠ODC,
∵∠ECD+∠DCO=90°,
∴∠EDC+∠ODC=90°,
∴∠ODE=90°,
∴OD⊥DE,
∵OD是⊙O的半径,
∴DE是圆0的切线.
分析:(1)根据锐角三角函数和勾股定理求出BC、AB,根据切割线定理求出BD即可;
(2)连接OD、CD,根据圆周角定理求出∠CDA=∠BDC=90°,根据直角三角形的性质和等腰三角形的性质求出∠ECD=∠EDC,∠OCD=∠ODC即可.
点评:本题主要考查对勾股定理,等腰三角形的性质,直角三角形斜边上的中线的性质,切线的判定,圆周角定理,锐角三角函数等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网