题目内容
13、分解因式:x3-xy2-x+y=
(x-y)(x 2+xy-1)
.分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解,根据x3-xy2,首先提取公因式再用平方差公式分解,最后运用提取公因式分解.
解答:解:x3-xy2-x+y,
=x(x 2-y 2)-(x-y),
=x(x-y)(x+y)-(x-y),
=(x-y)(x 2+xy-1).
故答案为:(x-y)(x 2+xy-1).
=x(x 2-y 2)-(x-y),
=x(x-y)(x+y)-(x-y),
=(x-y)(x 2+xy-1).
故答案为:(x-y)(x 2+xy-1).
点评:此题考查了分组分解法分解因式,难点是采用两两分组,注意多次运用提取公因式法分解.
练习册系列答案
相关题目
下列各式从左到右的变形是分解因式的是( )
A、2a2-b2=(a+b)(a-b)+a2 | B、2a(b+c)=2ab+2ac | C、x3-2x2+x=x(x-1)2 | D、(x-1)(y-1)=xy-x-y+1 |