题目内容

如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为(5,5
3
)
,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.
(1)∵顶点B的坐标为(5,5
3
)
,AB=10,
∴sin∠BAO=
5
3
10
=
3
2

∴∠BAO=60度.

(2)点P的运动速度为2个单位/秒.

(3)过P作PM⊥x轴,
∵点P的运动速度为2个单位/秒.
∴t秒钟走的路程为2t,即AP=2t,
又∵∠APM=30°,
∴AM=t,又OA=10,
∴OM=(10-t),即为三角形OPQ中OQ边上的高,
而DQ=2t,OD=2,可得OQ=2t+2,
∴P(10-t,
3
t)(0≤t≤5),
∵S=
1
2
OQ•OM=
1
2
(2t+2)(10-t),
=-(t-
9
2
2+
121
4

∴当t=
9
2
时,S有最大值为
121
4
,此时P(
11
2
9
3
2
).

(4)当点P沿这两边运动时,∠OPQ=90°的点P有2个.
①当点P与点A重合时,∠OPQ<90°,
当点P运动到与点B重合时,OQ的长是12单位长度,
作∠OPM=90°交y轴于点M,作PH⊥y轴于点H,
由△OPH△OPM得:OM=
20
3
3
=11.5,
所以OQ>OM,从而∠OPQ>90度.
所以当点P在AB边上运动时,∠OPQ=90°的点P有1个.
②同理当点P在BC边上运动时,可算得OQ=12+
10
3
3
=17.8,
而构成直角时交y轴于(0,
35
3
3
),
35
3
3
=20.2>17.8,
所以∠OCQ<90°,从而∠OPQ=90°的点P也有1个.
所以当点P沿这两边运动时,∠OPQ=90°的点P有2个.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网