ÌâÄ¿ÄÚÈÝ

¾«Ó¢¼Ò½ÌÍøÒÑÖª£ºÈçͼ£¬Å×ÎïÏßy=ax2+bx-2½»xÖáÓÚA£¬BÁ½µã£¬½»yÖáÓÚµãC£¬OC=OA£¬¡÷ABCµÄÃæ»ýΪ2£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôƽÐÐÓÚxÖáµÄ¶¯Ö±ÏßDE´ÓµãC¿ªÊ¼£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØyÖáÕý·½ÏòƽÒÆ£¬ÇÒ·Ö±ð½»yÖá¡¢Ï߶ÎBCÓÚµãE¡¢µãD£¬Í¬Ê±¶¯µãP´ÓµãB³ö·¢£¬ÔÚÏ߶ÎOBÉÏÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÏòÔ­µãOÔ˶¯£®µ±µãPÔ˶¯µ½µãOʱ£¬Ö±ÏßDEÓëµãP¶¼Í£Ö¹Ô˶¯£®Á¬½ÓDP£¬ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ룮
¢Ùµ±tΪºÎֵʱ£¬
1
ED
+
1
OP
µÄÖµ×îС£¬²¢Çó³ö×îСֵ£»
¢ÚÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹ÒÔP£¬B£¬DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£®Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Çó³öCµÄ×ø±ê£¬µÃµ½A¡¢BµÄ×ø±ê£¬ÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-2£©£¨x-4£©£¬´úÈëµãCµÄ×ø±êÇó³öa¼´¿É£»
£¨2£©¢ÙÓÉÌâÒ⣺CE=t£¬PB=2t£¬OP=4-2t£¬ÓÉED¡ÎBAµÃ³ö
ED
OB
=
CE
CO
£¬Çó³öED=2CE=2t£¬¸ù¾Ý
1
ED
+
1
OP
=
1
2t
+
1
4-2t
=
4
2t(4-2t)
=
1
-t2+2t
£¬Çó³ö¼´¿É£»¢ÚÒÔP¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆÓÐÁ½ÖÖÇé¿ö£º
BP
AB
=
BD
BC
ºÍ
BP
BD
=
BC
BA
´úÈëÇó³ö¼´¿É£®
½â´ð£º½â£º£¨1£©Èçͼ£¬ÓÉÅ×ÎïÏßy=ax2+bx-2µÃ£ºC£¨0£¬-2£©£¬
¡àOA=OC=2£¬
¡àA£¨2£¬0£©£¬
¡ß¡÷ABCµÄÃæ»ýΪ2£¬
¡àAB=2£¬
¡àB£¨4£¬0£©£¬
¡àÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x-2£©£¨x-4£©£¬´úÈëµãC£¨0£¬-2£©£¬
a=-
1
4
£¬
¾«Ó¢¼Ò½ÌÍø
¡àÅ×ÎïÏߵĽâÎöʽΪy=-
1
4
(x-2)(x-4)=-
1
4
x2+
3
2
x-2
£¬
´ð£ºÅ×ÎïÏߵĽâÎöʽΪy=-
1
4
x2+
3
2
x-2£®

£¨2£©½â£ºÓÉÌâÒ⣺CE=t£¬PB=2t£¬OP=4-2t£¬
¡ßED¡ÎBA
¿ÉµÃ£º
ED
OB
=
CE
CO
£¬
¼´
ED
4
=
CE
2
£¬
¡àED=2CE=2t£¬
¢Ù
1
ED
+
1
OP
=
1
2t
+
1
4-2t
=
4
2t(4-2t)
=
1
-t2+2t
£¬
¡ßµ±t=1ʱ£¬-t2+2tÓÐ×î´óÖµ1£¬
¡àµ±t=1ʱ
1
ED
+
1
OP
µÄÖµ×îС£¬×îСֵΪ1£®
´ð£ºµ±tΪ1ʱ£¬
1
ED
+
1
OP
µÄÖµ×îС£¬×îСֵÊÇ1£®

¢Ú½â£ºÓÉÌâÒâ¿ÉÇó£ºCD=
5
t
£¬CB=2
5
£¬
¡àBD=2
5
-
5
t
£¬
¡ß¡ÏPBD=¡ÏABC£¬
¡àÒÔP¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆÓÐÁ½ÖÖÇé¿ö£º
µ±
BP
AB
=
BD
BC
ʱ£¬¼´
2t
2
=
2
5
-
5
t
2
5
£¬
½âµÃ£ºt=
2
3
£¬
µ±
BP
BD
=
BC
BA
ʱ£¬¼´
2t
2
5
-
5
t
=
2
5
2
£¬
½âµÃ£ºt=
10
7
£¬
µ±t=
2
3
»òt=
10
7
ʱ£¬ÒÔP¡¢B¡¢DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£®
´ð£º´æÔÚtµÄÖµ£¬Ê¹ÒÔP£¬B£¬DΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ABCÏàËÆ£¬tµÄÖµÊÇ
2
3
»ò
10
7
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶Ô¶þ´Îº¯ÊýµÄ×îÖµ£¬Óôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬½âÒ»ÔªÒ»´Î·½³Ì£¬ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨£¬×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø